Thermostatic Control Valve

Model R - Cast Steel

Typical applications

- Refrigeration compressors
- Industrial compressors
- Turbines
- Engines
- Gear boxes
- High pressure applications

Key benefits

- No leak design
 - No external moving parts
 - No external dynamic seals
- Easily removable elements
- Environmentally friendly, reliable performance
- Easy installation operates in any mounting position

Key features

- Flow rates of 3 82m³/hr (13 360 US gpm)
- DN20 and DN80 (³/₄" and 3") pipe sizes

R Valve Range

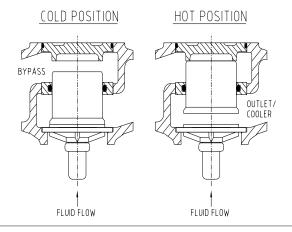
- Tamper-proof temperature settings from 35°C to 82°C (95°F to 180°F)
- Pressure ratings up to 35 bar (500 psi)

Datasheet_R_Thermostatic_Control_Valve_0112_Rev3

www.amot.com

Contents

Overview
Applications 4
Specification4
Valve Characteristics 5
Pressure drop5 Flow coefficient5 Available versions7 Temperature & element characteristics7
Service kits
How to order
Dimensions & Weights9


Overview

AMOT thermostatic valves provide reliable control of fluid temperatures in cooling systems, heat recovery and many other temperature control applications.

They are also suitable for process control and industrial applications where fluids must be mixed or diverted depending upon temperature.

All AMOT internally sensed valves have positive 3-way action. This ensures that on process start up all of the flow is through the bypass line giving the fastest possible warm up time.

Operation and flow control is established by the temperature element, which constantly monitors

Leak holes

Leak holes can be drilled to allow fluid between ports B and C:

- 1. To allow small flows to cooler during start up which slows down warm up cycle.
- 2. To allow small flows to maintain some flow through cooler in order to

Temperature settings

A wide selection of temperatures are available. Follow the equipment manufacturers' guidelines for oil systems and for specific operating temperatures of cooling/heating systems.

In general the temperature quoted is the nominal operating temperature in diverting mode on water systems.

and regulates the process fluid to the exact specified temperature setting.

When required the valve will positively shut off the bypass line to give full cooling.

A 3-way valve ensures constant volume flow in the system and gives no restriction during the warm up cycle, ensuring maximum performance. Where shut off is not required, bypass holes are available.

The temperature control power is created by the expansion of a wax/copper mixture which is highly sensitive to temperature changes.

Large forces are created by the warming/ expansion of the mixture which in turn acts upon the sliding valve, thus regulating the flow.

The diagram opposite shows the valve actuation in diverting mode at start and cooling positions.

During operation the sliding valve constantly modulates for accurate temperature control.

The reliable rugged construction provides a unit sensitive to temperature variations, not easily disturbed by pressure changes and sudden surges, which maintains stable temperatures over a wide range of operating conditions.

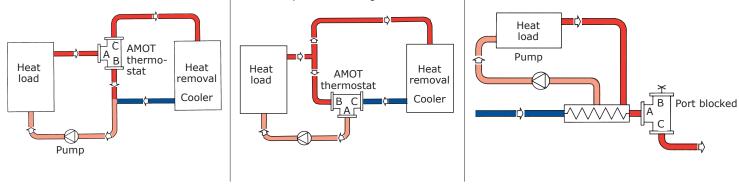
prevent condensation or, in extreme cases, freezing. In applications where additives are not or cannot be used.

For long life AMOT valves should not be operated continuously at temperatures in excess of their maximum continuous rating. If this condition is anticipated then consult AMOT for suitable alternatives.

For mixing and oil circuits the temperature may be one to two degrees Centrigrade higher due to flow, viscosity and other system parameters.

Applications

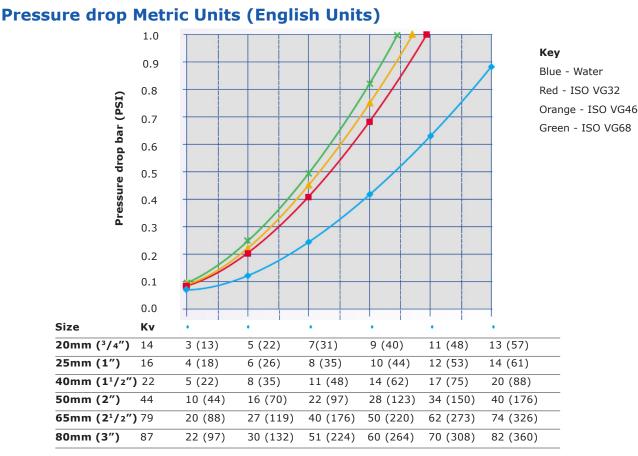
Diverting Applications


When valves are used for diverting service, the inlet is Port A (temperature sensing port), with Port C being connected to the cooler, and Port B connected to the cooler by-pass line.

Mixing Applications

When valves are used for mixing service, Port C is the cold fluid inlet port from the cooler, Port B is the hot by-pass fluid inlet, and Port A the common outlet. Port A is the temperature sensing port and will mix the hot and cold fluids in the correct proportion so as to produce the desired outlet temperature leaving Port A.

2-way Water Saving Applications


Valve as shown maintains minimum flow through cooler to conserve water. Requires internal leak hole to permit small flow for sensing.

Specification

Body material	Cast steel BS 3146 CLA 1A-ASTM A2 Grade 1.0169 (GSC 25N)	16 WCB-DIN 17245				
Element material	Standard elements are of electroless nickel plated brass and bronze	Elements without plating available (Refer to How to order on page 8)				
Seal materials	Neoprene/Viton					
Welded port	Butt weld DIN 2448 PN40					
connections	Butt weld ANSI B36:10 Schedule 40					
	Socket weld ANSI 16.11					
Valve sizes (nominal bore)	20 - 80mm	(3/4" - 3")				
Control temperatures	35°C to 82°C	(95°F to 180°F)				
Flow rate (based on water)	3 to 82 m ³ /hour	(13 to 360 US gpm)				
Pressure rating	35 bar	(500 psi)				
Recommended pressure drop	0.14 to 0.5 bar	(2 to 7 psi)				

Valve characteristics

Flowrate m³/hr (US gpm) – water

Flow coefficient

AMOT valve flow coefficient (calculated)							
Size Kv Cv							
20mm (3/4")	14	16					
25mm (1")	16	18					
40mm (1 ¹ /2")	22	25					
50mm (2")	44	51					
65mm (2 ¹ /2")	79	91					
80mm (3")	87	101					

Kv is the flow coefficient in metric units. It is defined as the flow rate in cubic meters per hour (m³/h) of water at a temperature of 16° Celsius with a pressure drop across the valve of 1 bar. The basic formula to find a valve's Kv is shown below:

$$DP = \left(\frac{Q}{Kv}\right)^2 SG \qquad Q = Kv \sqrt{\frac{Dp}{SG}} \qquad Q = Flow in m^3/hr$$
$$Dp = Pressure drop (Bar)$$
$$SG = Specific gravity of fluid$$

(Water = 1.0)Kv = Valve flow coefficient

Cv is the flow coefficient in English units. It is defined as the flow rate in US Gallons per minute (gpm) of water at a temperature of 60° Fahrenheit with a pressure drop across the valve of 1 psi. The basic formula to find a valve's Cv is shown below:

$$DP = \left(\frac{Q}{Cv}\right)^2 SG \qquad Q = Cv \sqrt{\frac{Dp}{SG}} \qquad \begin{array}{l} Q = & Flow \mbox{ in US gallons} \\ Dp = Pressure \mbox{ drop (psi)} \\ SG = Specific \mbox{ gravity of fluid (Water} \\ Cv = Valve \mbox{ flow coefficient} \end{array}$$

= 1.0)

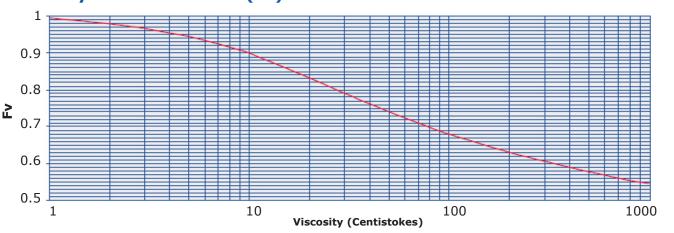
Valve characteristics continued

Viscosity correction

For the selection of valves for use with more viscous fluids than water, the following must be calculated in addition to using the previously mentioned formulae:

Viscosity

Find the viscosity of the fluid to be used in the valve. This will generally be in centistokes (cST).


ISO grade oil is easy to calculate as the grade no. is the viscosity. i.e. ISO VG 46 = 46 centistokes at $43^{\circ}C$ (110°F) • Viscosity Correction

Once the viscosity value has been found, the Flow Coefficient correction factor can be established using the viscosity correction graph below.

The correction value that is produced by the graph should then be multiplied by the original Flow Coefficient. This gives the corrected Flow Coefficient, which can then be used in the standard formulae.

e.g:

100 cST = correction factor of 0.68 0.68 x Flow Co. = corrected Flow Co. (Kv or Cv)

Viscosity correction curve (Fv)

SAE oils viscosities

Engine Oils		Gear Oi
Oil	cST	Oil
SAE 5W	6.8	SAE 75W
SAE 10W	32	SAE 80W
SAE 20	46	SAE 85W
SAE 20W	68	SAE 90
SAE 30	100	SAE 140
SAE 40	150	
SAE 50	220	
6 B	394	
8 B	571	

Gear Oils								
Oil	cST							
SAE 75W	22							
SAE 80W	46							
SAE 85W	100							
SAE 90	150							
SAE 140	460							

Approximate viscosities of SAE oils at 43°C (110°F) (cST).

Based on leading oil manufacturers' published data.

Valve characteristics continued

Available versions

Size	Connection type								
mm (")	Butt weld DIN 2448 PN40 (X)	Socket weld ANSI B16.11 (Y)	Butt weld ANSI B36.10 SCH.40 (Z)						
20 (3/4)	 ✓ 	~	 ✓ 						
25 (1)	 ✓ 	~	~						
40 (1 ¹ /2)	 ✓ 	~	~						
50 (2)	~	~	 ✓ 						
65 (2 ¹ /2)	 ✓ 	~	~						
80 (3)	v								

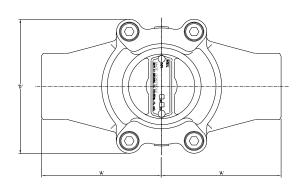
Temperature and element characteristics

All temperatures in °C (°F)

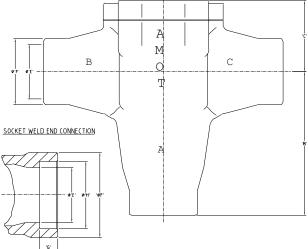
Control		Temperat	ure range			Maximum	continuous		Code
temperature °C (°F)	20 - 40 mm	0.79 - 1.57 inches	50 - 80 mm	1.97 - 3.15 inches	20 - 40 mm	0.79 - 1.57 inches	50 - 80 mm	1.97 - 3.15 inches	
35 (95)	30-40	86-104	29-41	85-105	50	122	49	120	095
38 (100)	33-42	91-108	34-42	91-108	75	167	50	122	100
43 (110)	38-47	100-117	38-47	100-117	82	180	56	133	110
49 (120)	43-55	110-131	43-54	110-130	88	191	66	150	120
54 (130)	49-60	120-140	51-60	124-140	95	203	68	158	130
60 (140	54-65	130-150	57-66	135-151	99	210	74	165	140
66 (150)	60-71	140-160	63-72	145-161	100	212	82	180	150
71 (160)	65-76	150-170	68-78	155-173	100	212	88	190	160
77 (170)	73-82	163-180	74-83	165-181	100	212	93	200	170
79 (175)	77-85	170-185	77-85	170-185	105	221	102	215	175
82 (180)	79-88	175-191	79-88	175-191	110	231	104	220	180

Service kits

Size DN mm (inch)	Material	Kit number
20 - 40 (3/4 - 1 1/2)	Nitrile	46857X101
	Viton	46857X102
	Neoprene	46857X103
50 - 65 (2 - 2 1/2)	Nitrile	46758X101
	Viton	46758X102
	Neoprene	46758X103


Size DN mm (inch)	Material	Kit number
80 (3)	Nitrile	80660X101
	Viton	80660X102
	Neoprene	80660X103

How to order


Use the tables below to select the unique specification of your R Valve.

Example	RO	40	s	Х	110	03	4	AA	Code Descripti	on			
-													
Basic Model	RO		ŀ						Standard Constr	ruction			
					•		ŀ		Nomi	nal bore			
									mm	inch	No. of elements		
		20							20	3/4	1		
		25					Ŀ.		25	1	1		
Valve Size		40							40	1 1/2	1		
*two elemen	ts	50			• . • .		ŀ.		55	2	1		
		65							65	2 1/2	1		
*80									80	3	2		
										-			
Materia	al		S						Steel BS:3146 C	CLA 1A - ASTM A2	16 WCB - DIN 1724	15 GSC25N	
			-				•			nection	Size availability		
				Х					Butt weld DIN 24		20mm to 80mm (¾	4" to 3")	
Connee	ction			Ŷ					Socket weld AN		20mm to 65mm (³ /	,	
				Ż					Butt weld ANSI		20mm to 65mm (3/		
				-						Nominal tempera	,	Maximum continu	Jous °C (°F)
									Control temp.	20 to 44	50 to 80	20 to 44	50 to 80
								°C (°F)	mm (inch)	mm (inch)	mm (inch)	mm (inch)	
					095				35 (95)	30-40 (86-104)	29-41 (85-105)	15 (122)	49 (120)
					100				38 (100)	33-42 (91-108)	34-42 (93-108)	75 (167)	50 (122)
				110		ŀ		43 (110)	38-47 (100-117)	38-47 (100-117)	82 (180)	56 (133)	
		120				49 (120)	43-55 (110-131)	43-54 (110-130)	88 191)	66 (150)			
					130		ŀ		54 (130)	49-60 (120-140)	51-60 (124-140)	95 (203)	68 (158)
Contro	l Ten	np.			140				60 (140)	54-65 (130-150)	57-66 (135-151)	99 (210)	74 (165)
		•			150		Ė		66 (150)	60-71 (140-160)	63-72 (145-161)	100 (212)	82 (180)
					160				71 (160	65-76 (150-170)	68-78 (115-173)	100 (212)	88 (190)
				170			Ċ.		77 (170)	72-82 (163-180)	74-83 (165-181)	100 (212)	93 (200)
					175		Ŀ.		79 (175)	76-85 (170-185)	77-85 (170-185)	105 (221)	102 (215)
					180				82 (180)	79-88 (175-191)	79-88 (175-191)	110 (231)	104 (220)
							ŀ.			Element			- (-)
									Seal material	Plating	Туре		
						01			Nitrile	J	, , , , , , , , , , , , , , , , , , ,		
						02	· .		Viton	None			
						03	İ.		Neoprene		.		
Elen	nent	Code	e			04	Ŀ.		Nitrile		Standard		
						05			Viton	Electroless Nickel			
						06			Neoprene				
										e diameter			
									mm	inch			
							0		None	None			
							2		2	0.079			
							3		3	0.118			
Leakhole diam	eter	betw	eer	n po	orts E	8&C	4		4	0.157			
							5		5	0.197			
							6		6	0.236			
							8		8	0.315			
Customizations													
									Customizations	S			

Dimensions

ALLOW 75mm ABOVE COVER TO REMOVE ELEMENT

General								
Nominal bore	20, 25 & 40mm 50, 65 & 80mm							
Connection	Butt	Socket	Butt	Socket				
А	85	95	100	110				
В	105	115	132	142				
С	52	52	64	64				
D	102	102	123	123				

Butt weld DIN 2448 PN40										
Nominal bore	20 (3/4")	25 (1″)	40 (1 1/2″)	50 (2")	65 (2 1/2″)	80 (3″)				
Dia E	22.3	28.5	43.1	54.5	70.3	78				
Dia F	27	34	48	60	76	89				
Weight Kg (lbs)	3.2 (7)	3.2 (7)	3.5 (8)	7 (15)	7 (15)	17.5 (39)				

Butt weld schedule 40									
Nominal bore	20 (3/4")	25 (1")	40 (1 1/2″)	50 (2″)	65 (2 1/2″)	80 (3″)			
Dia E	20.9	26.6	40.9	52.5	N/A	N/A			
Dia F	27	34	48	60	N/A	N/A			
Weight Kg (lbs)	3.2 (7)	3.2 (7)	3.5 (8)	7 (15)	N/A	N/A			

Socket weld ANSI 16.11									
Nominal bore	20 (3/4")	25 (1″)	40 (1 1/2″)	50 (2")	65 (2 1/2″)	80 (3″)			
Dia E	20	25	40	50	65	N/A			
Dia F	38	46	62	74	92	N/A			
G	13	13	13	16	16	N/A			
Dia H	27.2	33.9	48.8	61.2	74	N/A			
Weight Kg (lbs)	3.5 (8)	3.5 (8)	4 (9)	7.5 (16)	7.5 (16)	N/A			

Americas

AMOT USA 8824 Fallbrook Dr Houston TX 77064 USA

Tel: +1 (281) 940 1800 Fax +1 (713) 559 9419 Email sales@amotusa.com

Asia and Australasia

AMOT Shanghai Rm 4102 - 4104 United Plaza 1468 Nanjing Road West Shanghai 200040 China

Tel +86 (0) 21 6279 7700 Fax +86 (0) 21 5237 8560 Email shanghai@amot.com

AMOT Singapore 10 Eunos Road 8 #12-06 Singapore Post Centre Singapore 408600

Tel +65 6408 6265 Fax +65 6293 3307 Email singapore@amot.com

Europe and Africa

AMOT Western Way Bury St Edmunds Suffolk, IP33 3SZ England

Tel +44 (0) 1284 762222 Fax +44 (0) 1284 760256 Email info@amot.com

AMOT Controls GmbH Rondenbarg 25 22525 Hamburg Germany Tel +49 (0) 40 8537 1298 Fax +49 (0) 40 8537 1331 Email germany@amot.com

AMOT Russia #34 Shabolovka Street Building 2 Moscow 115419 Russia

Tel: +7 495 617 12 93 Fax: +7 495 913 97 65

